Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
2.
Allergy Asthma Proc ; 43(5): 419-430, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2022489

ABSTRACT

Background: Secretory immunoglobulin A (sIgA) plays an important role in antiviral protective immunity. Although salivary testing has been used for many viral infections, including severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS), its use has not yet been well established with the SARS coronavirus 2 (SARS-CoV-2). Quantification of salivary IgA and IgG antibodies can elucidate mucosal and systemic immune responses after natural infection or vaccination. Here, we report the development and validation of a rapid enzyme-linked immunosorbent assay (ELISA) for anti-SARS-CoV-2 salivary IgA and serum IgG antibodies, and present quantitative results for immunized subjects both prior to or following COVID-19 infections. Objective: Total and serum SARS-CoV-2 spike-specific IgG responses were compared with salivary spike-specific IgA and IgG responses in samples obtained from patients recently infected with SARS-CoV-2 and from subjects recently immunized with COVID-19 vaccines. Methods: A total of 52 paired saliva and serum samples were collected from 26 study participants: 7 subjects after COVID-19 infection and 19 subjects who were uninfected. The ELISA results from these samples were compared with five prepandemic control serum samples. Total IgG and SARS-CoV-2 spike-specific IgG in the serum samples from the subjects who were infected and vaccinated were also measured in a commercial laboratory with an enzyme immunoassay. Results: A wide variation in antibody responses was seen in salivary and serum samples measured by both methods. Three groups of serum total and IgG spike-specific SARS-CoV-2 antibody responses were observed: (1) low, (2) intermediate, and (3) high antibody responders. A correlational analysis of salivary IgA (sIgA) responses with serum IgG concentrations showed a statistical correlation in the low and intermediate antibody responder groups but not in the high group (which we believe was a result of saturation). Conclusion: These preliminary findings suggest measuring salivary and serum IgG and IgA merit further investigation as markers of current or recent SARS-CoV-2 infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin A, Secretory , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Saliva/chemistry , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
3.
PLoS One ; 17(2): e0253638, 2022.
Article in English | MEDLINE | ID: covidwho-1910476

ABSTRACT

Population immunity (herd immunity) to SARS-CoV-2 derives from two sources: vaccinations or cases of infection with the virus. Infections can be diagnosed as COVID-19 and registered, or they can be asymptomatic, oligosymptomatic, or even full-blown but undiagnosed and unregistered when patients recovered at home. Estimation of population immunity to SARS-CoV-2 is difficult and remains a subject of speculations. Here we present a population screening for SARS-CoV-2 specific IgG and IgA antibodies in Polish citizens (N = 501) who had never been positively diagnosed with or vaccinated against SARS-CoV-2. Serum samples were collected in Wroclaw (Lower Silesia) on 15th and 22nd May 2021. Sera from hospitalized COVID-19 patients (N = 22) or from vaccinated citizens (N = 14) served as positive controls. Sera were tested with Microblot-Array COVID-19 IgG and IgA (quantitative) that contain specific SARS-CoV-2 antigens: NCP, RBD, Spike S2, E, ACE2, PLPro protein, and antigens for exclusion cross-reactivity with other coronaviruses: MERS-CoV, SARS-CoV, HCoV 229E Np, HCoV NL63 Np. Within the investigated population of healthy individuals who had never been positively diagnosed with or vaccinated against SARS-CoV-2, we found that 35.5% (178 out of 501) were positive for SARS-CoV-2-specific IgG and 52.3% (262 out of 501) were positive for SARS-CoV-2-specific IgA; 21.2% of the investigated population developed virus-specific IgG or IgA while being asymptomatic. Anti-RBD IgG, which represents virus-neutralizing potential, was found in 25.6% of individuals (128 out of 501). These patients, though positive for anti-SARS-CoV-2 antibodies, cannot be identified in the public health system as convalescents due to undiagnosed infections, and they are considered unaffected by SARS-CoV-2. Their contribution to population immunity against COVID-19 should however be considered in predictions and modeling of the COVID-19 pandemic. Of note, the majority of the investigated population still lacked anti-RBD IgG protection (74.4%); thus vaccination against COVID-19 is still of the most importance for controlling the pandemic.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , Immunity, Herd , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Adolescent , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/prevention & control , Cross Reactions , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Poland/epidemiology , Treatment Outcome , Young Adult
4.
Proc Natl Acad Sci U S A ; 119(28): e2204607119, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1908385

ABSTRACT

Messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective at inducing protective immunity. However, weak antibody responses are seen in some individuals, and cellular correlates of immunity remain poorly defined, especially for B cells. Here we used unbiased approaches to longitudinally dissect primary antibody, plasmablast, and memory B cell (MBC) responses to the two-dose mRNA-1273 vaccine in SARS-CoV-2-naive adults. Coordinated immunoglobulin A (IgA) and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses but earlier and more intensely after dose 2. While antibody and B cell cellular responses were generally robust, they also varied within the cohort and decreased over time after a dose-2 peak. Both antigen-nonspecific postvaccination plasmablast frequency after dose 1 and their spike-specific counterparts early after dose 2 correlated with subsequent antibody levels. This correlation between early plasmablasts and antibodies remained for titers measured at 6 months after vaccination. Several distinct antigen-specific MBC populations emerged postvaccination with varying kinetics, including two MBC populations that correlated with 2- and 6-month antibody titers. Both were IgG-expressing MBCs: one less mature, appearing as a correlate after the first dose, while the other MBC correlate showed a more mature and resting phenotype, emerging as a correlate later after dose 2. This latter MBC was also a major contributor to the sustained spike-specific MBC response observed at month 6. Thus, these plasmablasts and MBCs that emerged after both the first and second doses with distinct kinetics are potential determinants of the magnitude and durability of antibodies in response to mRNA-based vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibody Formation , B-Lymphocytes , COVID-19 , RNA, Messenger , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , B-Lymphocytes/immunology , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , SARS-CoV-2/immunology , Vaccination
5.
PLoS One ; 17(3): e0249723, 2022.
Article in English | MEDLINE | ID: covidwho-1896431

ABSTRACT

Approximately 10% of infants infected with SARS-CoV-2 will experience COVID-19 illness requiring advanced care. A potential mechanism to protect this population is passive immunization via the milk of a previously infected person. We and others have reported on the presence of SARS-CoV-2-specific antibodies in human milk. We now report the prevalence of SARS-CoV-2 IgA in the milk of 74 COVID-19-recovered participants, and find that 89% of samples are positive for Spike-specific IgA. In a subset of these samples, 95% exhibited robust IgA activity as determined by endpoint binding titer, with 50% considered high-titer. These IgA-positive samples were also positive for Spike-specific secretory antibody. Levels of IgA antibodies and secretory antibodies were shown to be strongly positively correlated. The secretory IgA response was dominant among the milk samples tested compared to the IgG response, which was present in 75% of samples and found to be of high-titer in only 13% of cases. Our IgA durability analysis using 28 paired samples, obtained 4-6 weeks and 4-10 months after infection, found that all samples exhibited persistently significant Spike-specific IgA, with 43% of donors exhibiting increasing IgA titers over time. Finally, COVID-19 and pre-pandemic control milk samples were tested for the presence of neutralizing antibodies; 6 of 8 COVID-19 samples exhibited neutralization of Spike-pseudotyped VSV (IC50 range, 2.39-89.4ug/mL) compared to 1 of 8 controls. IgA binding and neutralization capacities were found to be strongly positively correlated. These data are highly relevant to public health, not only in terms of the protective capacity of these antibodies for breastfed infants, but also for the potential use of such antibodies as a COVID-19 therapeutic, given that secretory IgA is highly in all mucosal compartments.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoglobulin A/immunology , Milk, Human/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/metabolism , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Immunoglobulin A/metabolism , Neutralization Tests , SARS-CoV-2/isolation & purification , Young Adult
6.
Sci Rep ; 12(1): 8890, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1864769

ABSTRACT

We assessed the feasibility of a highly sensitive immunoassay method based on single molecule array (Simoa) technology to detect IgG and IgA antibodies against SARS-CoV-2 spike protein receptor binding domain (RBD) in saliva from individuals with natural or vaccine-induced COVID-19 immunity. The performance of the method was compared to a laboratory-developed SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay (ELISA). Paired serum and saliva specimens were collected from individuals (n = 40) prior to and 2 weeks after receiving an initial prime COVID-19 vaccine dose (Pfizer/BioNTech BNT162b2 or Moderna mRNA-1273). Saliva was collected using a commercially available collection device (OraSure Inc.) and SARS-CoV-2 RBD IgG antibodies were measured by an indirect ELISA using concentrated saliva samples and a Simoa immunoassay using unconcentrated saliva samples. The IgG results were compared with paired serum specimens that were analyzed for total RBD antibodies using the ELISA method. The analytical sensitivity of the saliva-based Simoa immunoassay was five orders of magnitude higher than the ELISA assay: 0.24 pg/mL compared to 15 ng/mL. The diagnostic sensitivity of the saliva ELISA method was 90% (95% CI 76.3-97.2%) compared to 91.7% (95% CI 77.5-98.2%) for the Simoa immunoassay without total IgG-normalization and 100% (95% CI 90.3-100%) for the Simoa immunoassay after total IgG-normalization when compared to the serum ELISA assay. When analyzed using the SARS-CoV-2 RBD IgG antibody ELISA, the average relative increase in antibody index (AI) between the saliva of the post- and pre-vaccinated individuals was 8.7 (AIpost/pre). An average relative increase of 431 pg/mL was observed when the unconcentrated saliva specimens were analyzed using the Simoa immunoassay (SARS-CoV-2 RBD IgGpost/pre). These findings support the suitability of concentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG antibodies via ELISA, and unconcentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG and IgA using an ultrasensitive Simoa immunoassay.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
EBioMedicine ; 75: 103805, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1850947

ABSTRACT

BACKGROUND: Two doses of mRNA vaccination have shown >94% efficacy at preventing COVID-19 mostly in naïve adults, but it is not clear if the second dose is needed to maximize effectiveness in those previously exposed to SARS-CoV-2 and what other factors affect responsiveness. METHODS: We measured IgA, IgG and IgM levels against SARS-CoV-2 spike (S) and nucleocapsid (N) antigens from the wild-type and S from the Alpha, Beta and Gamma variants of concern, after BNT162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna) vaccination in a cohort of health care workers (N=578). Neutralizing capacity and antibody avidity were evaluated. Data were analyzed in relation to COVID-19 history, comorbidities, vaccine doses, brand and adverse events. FINDINGS: Vaccination induced robust IgA and IgG levels against all S antigens. Neutralization capacity and S IgA and IgG levels were higher in mRNA-1273 vaccinees, previously SARS-CoV-2 exposed, particularly if symptomatic, and in those experiencing systemic adverse effects (p<0·05). A second dose in pre-exposed did not increase antibody levels. Smoking and comorbidities were associated with 43% (95% CI, 19-59) and 45% (95% CI, 63-18) lower neutralization, respectively, and 35% (95% CI, 3-57%) and 55% (95% CI, 33-70%) lower antibody levels, respectively. Among fully vaccinated, 6·3% breakthroughs were detected up to 189 days post-vaccination. Among pre-exposed non-vaccinated, 90% were IgG seropositive more than 300 days post-infection. INTERPRETATION: Our data support administering a single-dose in pre-exposed healthy individuals as primary vaccination. However, heterogeneity of responses suggests that personalized recommendations may be necessary depending on COVID-19 history and life-style. Higher mRNA-1273 immunogenicity would be beneficial for those expected to respond worse to vaccination and in face of variants that escape immunity such as Omicron. Persistence of antibody levels in pre-exposed unvaccinated indicates maintenance of immunity up to one year. FUNDING: This work was supported by Institut de Salut Global de Barcelona (ISGlobal) internal funds, in-kind contributions from Hospital Clínic de Barcelona, the Fundació Privada Daniel Bravo Andreu, and European Institute of Innovation and Technology (EIT) Health (grant number 20877), supported by the European Institute of Innovation and Technology, a body of the European Union receiving support from the H2020 Research and Innovation Programme. We acknowledge support from the Spanish Ministry of Science and Innovation and State Research Agency through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. L. I. work was supported by PID2019-110810RB-I00 grant from the Spanish Ministry of Science & Innovation. Development of SARS-CoV-2 reagents was partially supported by the National Institute of Allergy and Infectious Diseases Centers of Excellence for Influenza Research and Surveillance (contract number HHSN272201400008C). The funders had no role in study design, data collection and analysis, the decision to publish, or the preparation of the manuscript.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibody Formation/drug effects , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , Health Personnel , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
Front Immunol ; 12: 801797, 2021.
Article in English | MEDLINE | ID: covidwho-1793017

ABSTRACT

Background: Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods: Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results: SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased (P=.02) during the first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion: Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness.


Subject(s)
Antibodies, Viral/analysis , Immunoglobulin A/analysis , Milk, Human/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Breast Feeding , COVID-19/immunology , Female , Humans , Immunization, Passive , Immunoglobulin A/immunology , Lactation , Longitudinal Studies , Milk, Human/virology , RNA, Viral/genetics
9.
Lancet Infect Dis ; 22(2): e52-e58, 2022 02.
Article in English | MEDLINE | ID: covidwho-1751515

ABSTRACT

As the number of individuals vaccinated against SARS-CoV-2 rises worldwide, population-level data regarding the vaccines' ability to reduce infection are being generated. Randomised trials have shown that these vaccines dramatically reduce symptomatic COVID-19; however, less is known about their effects on transmission between individuals. The natural course of infection with SARS-CoV-2 involves infection of the respiratory epithelia and replication within the mucosa to sufficient viral titres for transmission via aerosol particles and droplets. Here we discuss the available data on the existing, approved SARS-CoV-2 vaccines' capacity to reduce transmissibility by reducing primary infection, viral replication, capacity for transmission, and symptomaticity. The potential for mucosal-targeted SARS-CoV-2 vaccine strategies to more effectively limit transmission than intramuscular vaccines is considered with regard to known immunological mechanisms. Finally, we enumerate the population-level effects of approved vaccines on transmission through observational studies following clinical trials and vaccine distribution in real-world settings.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/transmission , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Virus Replication/immunology
10.
PLoS One ; 17(3): e0265016, 2022.
Article in English | MEDLINE | ID: covidwho-1745313

ABSTRACT

Serological databases represent an important source of information to perceive COVID-19 impact on health professionals involved in combating the disease. This paper describes SerumCovid, a COVID-19 serological database focused on the diagnosis of health professionals, providing a preliminary analysis to contribute to the understanding of the antibody response to the SARS-CoV-2. The study population comprises 321 samples from 236 healthcare and frontline workers fighting COVID-19 in Vitória de Santo Antão, Brazil. Samples were collected from at least six days of symptoms to more than 100 days. The used immunoenzymatic assays were Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA. The most common gender in SerumCovid is female, while the most common age group is between 30 and 39 years old. However, no statistical differences were observed in either genders or age categories. The most reported symptoms were fatigue, headaches, and myalgia. Still, some subjects presented positive results for IgA after 130 days. Based on a temporal analysis, we have not identified general patterns as subjects presented high and low values of IgA and IgG with different evolution trends. Unexpectedly, for subjects with both serological tests, the outcome of IgA and IgG tests were the same (either positive or negative) for more than 80% of the samples. Therefore, SerumCovid helps better understand how COVID-19 affected healthcare and frontline workers, which increases knowledge about the infection and enables direct prevention actions.


Subject(s)
COVID-19 Serological Testing , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Adolescent , Adult , Antibodies, Viral/immunology , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Databases as Topic , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
11.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: covidwho-1742932

ABSTRACT

Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the ß-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Cross Reactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Vaccination
12.
PLoS One ; 17(3): e0257930, 2022.
Article in English | MEDLINE | ID: covidwho-1731590

ABSTRACT

The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.


Subject(s)
COVID-19/therapy , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/virology , Female , HEK293 Cells , Humans , Immunization, Passive , Immunoglobulin A/blood , Immunoglobulin A/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/therapeutic use , Male , Middle Aged , Neutralization Tests , Receptors, IgG/genetics , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Young Adult , COVID-19 Serotherapy
13.
MAbs ; 14(1): 2031483, 2022.
Article in English | MEDLINE | ID: covidwho-1713454

ABSTRACT

Early humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are dominated by IgM and IgA antibodies, which greatly contribute to virus neutralization at mucosal sites. Given the essential roles of IgM and IgA in the control and elimination of SARS-CoV-2 infection, the mucosal immunity could be exploited for therapeutic and prophylactic purposes. However, almost all neutralizing antibodies that are authorized for emergency use and under clinical development are IgG antibodies, and no vaccine has been developed to boost mucosal immunity for SARS-CoV-2 infection. In addition to IgM and IgA, bispecific antibodies (bsAbs) combine specificities of two antibodies in one molecule, representing an important alternative to monoclonal antibody cocktails. Here, we summarize the latest advances in studies on IgM, IgA and bsAbs against SARS-CoV-2. The current challenges and future directions in vaccine design and antibody-based therapeutics are also discussed.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Viral/immunology , COVID-19 Drug Treatment , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin A/immunology , Immunoglobulin A/therapeutic use , Immunoglobulin M/immunology , Immunoglobulin M/therapeutic use , SARS-CoV-2
14.
J Immunol ; 208(5): 1001-1005, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1674946

ABSTRACT

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.


Subject(s)
Aging/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Nursing Homes , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Efficacy , Young Adult
15.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649494

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
16.
PLoS One ; 17(1): e0262868, 2022.
Article in English | MEDLINE | ID: covidwho-1643287

ABSTRACT

A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.


Subject(s)
Antibodies, Viral/chemistry , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/chemistry , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Male , Middle Aged , New York/epidemiology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2/classification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
17.
J Cell Mol Med ; 26(4): 1293-1305, 2022 02.
Article in English | MEDLINE | ID: covidwho-1626165

ABSTRACT

SARS-CoV-2 vaccines are highly efficient against severe forms of the disease, hospitalization and death. Nevertheless, insufficient protection against several circulating viral variants might suggest waning immunity and the need for an additional vaccine dose. We conducted a longitudinal study on the kinetics and persistence of immune responses in healthcare workers vaccinated with two doses of BNT162b2 mRNA vaccine with or without prior SARS-CoV-2 infection. No new infections were diagnosed during follow-up. At 6 months, post-vaccination or post-infection, despite a downward trend in the level of anti-S IgG antibodies, the neutralizing activity does not decrease significantly, remaining higher than 75% (85.14% for subjects with natural infection, 88.82% for vaccinated after prior infection and 78.37% for vaccinated only). In a live-virus neutralization assay, the highest neutralization titres were present at baseline and at 6 months follow-up in persons vaccinated after prior infection. Anti-S IgA levels showed a significant descending trend in vaccinated subjects (p < 0.05) after 14 weeks. Cellular immune responses are present even in vaccinated participants with declining antibody levels (index ratio 1.1-3) or low neutralizing activity (30%-40%) at 6 months, although with lower T-cell stimulation index (p = 0.046) and IFN-γ secretion (p = 0.0007) compared to those with preserved humoral responses.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , Immunity, Cellular , Immunity, Humoral , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Health Personnel , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interferon-gamma/blood , Interferon-gamma/immunology , Kinetics , Longitudinal Studies , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Time Factors
18.
Front Immunol ; 12: 781280, 2021.
Article in English | MEDLINE | ID: covidwho-1608387

ABSTRACT

The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Mucosal/immunology , SARS-CoV-2/immunology , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cytoplasmic Vesicles/immunology , Female , Humans , Immunoglobulin A/immunology , Mesocricetus , Mice, Inbred BALB C , Neisseria meningitidis/immunology , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
19.
Front Immunol ; 12: 793191, 2021.
Article in English | MEDLINE | ID: covidwho-1608200

ABSTRACT

Purpose: To compare SARS-CoV-2 antigen-specific antibody production and plasma neutralizing capacity against B.1 wild-type-like strain, and Gamma/P.1 and Delta/B.1.617.2 variants-of-concern, in subjects with different Covid-19 disease and vaccination histories. Methods: Adult subjects were: 1) Unvaccinated/hospitalized for Covid-19; 2) Covid-19-recovered followed by one BNT162b2 vaccine dose; and 3) Covid-19-naïve/2-dose BNT162b2 vaccinated. Multiplex Luminex® immunoassays measured IgG, IgA, and IgM plasma levels against SARS-CoV-2 receptor-binding domain (RBD), spike-1 (S), and nucleocapsid proteins. Neutralizing activity was determined in Vero E6 cytopathic assays. Results: Maximum anti-RBD IgG levels were similar in Covid-19­recovered individuals 8‒10 days after single-dose vaccination and in Covid-19-naïve subjects 7 days after 2nd vaccine dosing; both groups had ≈2­fold higher anti-RBD IgG levels than Unvaccinated/Covid-19 subjects tracked through 2 weeks post-symptom onset. Anti-S IgG expression patterns were similar to RBD within each group, but with lower signal strengths. Viral antigen-specific IgA and IgM levels were more variable than IgG patterns. Anti-nucleocapsid immunoglobulins were not detected in Covid-19-naïve subjects. Neutralizing activity against the B.1 strain, and Gamma/P.1 and Delta/B.1.617.2 variants, was highest in Covid­19-recovered/single-dose vaccinated subjects; although neutralization against the Delta variant in this group was only 26% compared to B.1 neutralization, absolute anti-Delta titers suggested maintained protection. Neutralizing titers against the Gamma and Delta variants were 33‒77% and 26‒67%, respectively, versus neutralization against the B.1 strain (100%) in the three groups. Conclusion: These findings support SARS-CoV-2 mRNA vaccine usefulness regardless of Covid-19 history, and confirm remarkable protection provided by a single vaccine dose in people who have recovered from Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , Immunoglobulin Isotypes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Animals , BNT162 Vaccine/administration & dosage , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin Isotypes/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vero Cells
20.
Rev Soc Bras Med Trop ; 54: e04612021, 2021.
Article in English | MEDLINE | ID: covidwho-1598762

ABSTRACT

Before eliciting an adaptive immune response, SARS-CoV-2 must overcome seven constitutive respiratory defense barriers. The first is the mucus covering the respiratory tract's luminal surface, which entraps inhaled particles, including infectious agents, and eliminates them by mucociliary clearance. The second barrier comprises various components present in the airway lining fluid, the surfactants. Besides providing low surface tension that allows efficient gas exchange at the alveoli, surfactants inhibit the invasion of epithelial cells by respiratory viruses, enhance pathogen uptake by phagocytes, and regulate immune cells' functions. The respiratory tract microbiota constitutes the third defense barrier against SARS-CoV-2. It activates the innate and adaptive immune cells and elicits anti-infectious molecules such as secretory IgA antibodies, defensins, and interferons. The fourth defense barrier comprises the antimicrobial peptides defensins, and lactoferrin. They show direct antiviral activity, inhibit viral fusion, and modulate the innate and adaptive immune responses. Secretory IgA antibodies, the fifth defense barrier, besides protecting the local microbiota against noxious agents, also inhibit SARS-CoV-2 cell invasion. If the virus overcomes this barrier, it reaches its target, the respiratory epithelial cells. However, these cells also act as a defense barrier, the sixth one, since they hinder the virus' access to receptors and produce antiviral and immunomodulatory molecules such as interferons, lactoferrin, and defensins. Finally, the sensing of the virus by the cells of innate immunity, the last constitutive defense barrier, elicits a cascade of signals that activate adaptive immune cells and may inhibit the development of productive infection. The subject of the present essay is discussing these mechanisms.


Subject(s)
COVID-19 , Immunity, Innate , Antibodies, Viral/immunology , Antimicrobial Peptides/immunology , COVID-19/immunology , Humans , Immunoglobulin A/immunology , Interferons/immunology , Lung/immunology , Lung/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL